2019 FERC Technical Conference: Increasing Real-Time and Day-Ahead Market Efficiency and Enhancing Resilience through Improved Software

MARKET-BASED RESOURCE ADEQUACY ASSESSMENT FRAMEWORK UNDER HIGH WIND PENETRATIONS

JONGHWAN KWON,1,* TODD LEVIN,1 ZHI ZHOU,1 AUDUN BOTTERUD,1,2

¹Energy Systems Division, Argonne National Laboratory

²Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

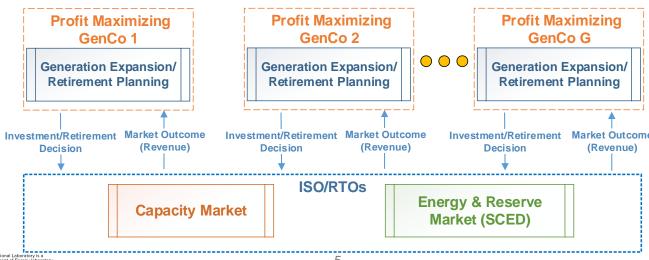
*kwonj@anl.gov

BACKGROUND

- Resource adequacy
 - The ability to provide adequate supply during peak load and stressed system conditions
 - Typically measured using long-term reliability standards (e.g. LOLE, LOLH, LOLP)
- Resource adequacy requirements
 - E.g., planning reserve margin
 - : translates the reliability standards into a reserve margin

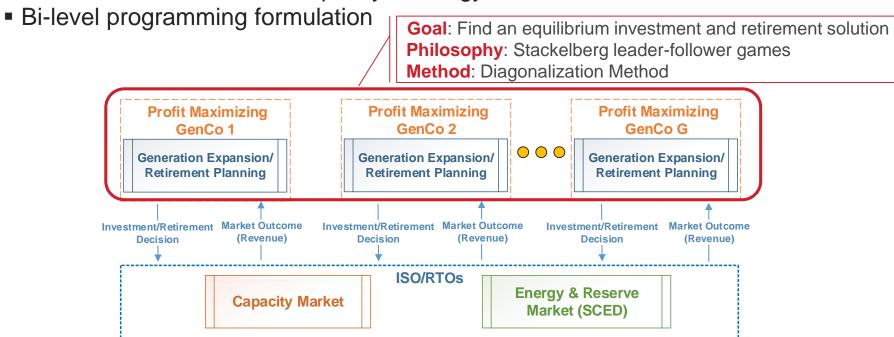
MARKET DESIGN FOR RESOURCE ADEQUACY

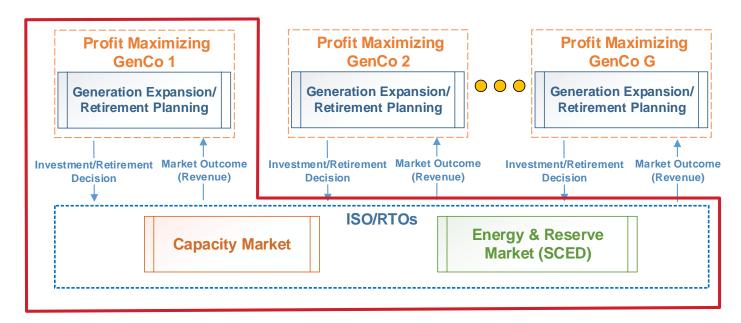
- Vertically integrated system
 - Centralized generation expansion planning
 - Integrated resource planning
- Restructured electricity markets
 - Market-based mechanisms to promote investments to meet resource adequacy requirements
- Energy-only markets (ERCOT)
- Capacity remuneration mechanisms (CRMs)
 - Capacity obligation and market (ISO-NE, MISO, NYISO, PJM)
 - Capacity obligation (CAISO, SPP)
 - Capacity payments
 - Strategic reserves


RESEARCH MOTIVATION

- Investigate resource adequacy in a <u>competitive market environment</u>
 - Main driver: Individual profit-maximizing generating companies (GenCos)
 - Various market designs and conditions to consider:
 - Electricity market design, in particular CRMs
 - Industry structure and level of competition
 - VRE penetration level
- Traditional centralized capacity expansion models
 - Minimizes system cost, cannot capture the decision making of individual generation GenCos
 - Limited ability to assess the effectiveness of capacity remuneration mechanisms
- Other tools needed to investigate market dynamics and resource adequacy in a competitive market environment

MULTI-AGENT RESOURCE PLANNING MODEL

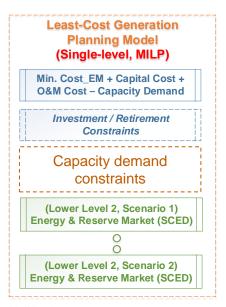

- Captures strategic interactions between individual GenCos' investment decisions
- Considers revenues from capacity + energy/reserve markets
- Bi-level programming formulation

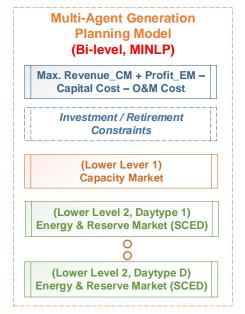

MULTI-AGENT RESOURCE PLANNING MODEL

- Captures strategic interactions between individual GenCos' investment decisions
- Considers revenues from capacity + energy/reserve markets

SOLUTION APPROACH

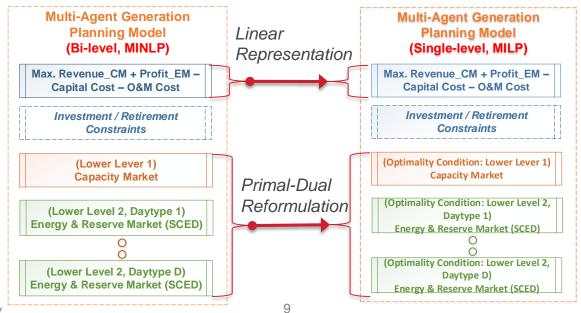
- A GenCo's decision solved individually as Stackelberg leader-follower game
- Nash Equilibrium among GenCos found with "diagonalization method"





LEAST-COST MODEL FOR COMPARISON

 Least-cost model: finds optimal generation portfolio while minimizing system-wide costs


 Individual Genco model: finds optimal generation portfolio while maximizing own profits

INDIVIDUAL GENCO PROBLEM

- Mathematical Problem with Equilibrium Constraints (MPEC)
- MPEC re-formulated as a MILP
- Further computational performance enhancement using a decomposition method

CASE STUDY

- Simplified "ERCOT"-like system for 2030
 - Projected peak load: 86,613 MW (1.57% increase per year)
 - Simple transmission system (9 nodes, 34 lines)
 - 30 representative days (scenario reduction)
- Generation Portfolio and GenCos
 - Total system capacity: 94,916 MW (ICAP), 77,218 MW (UCAP)
 - No. of existing thermal units: 176 → 51
 - No. of existing GenCos: 23No. of new entrants: 8

	Node	1	2	3	4	5	6	7	8	9	Total ICAP	Capacity Factor	Total UCAP
	Coal	2,127	8,347	1,770	1,804	538	925	0	0	0	15,511	1.00	15,511
	NGCC	8,451	11,854	6,914	1,758	498	300	3,259	0	0	33,035	1.00	33,035
	NGCT	5,373	5,040	804	2,646	1,845	811	672	1,210	0	18,401	1.00	18,401
	Nuclear	0	2,328	2,632	0	0	0	0	0	0	4,960	1.00	4,960
	Wind	0	3,756	4,967	12,793	0	0	0	0	0	21,516	0.19	4,191
	Solar	0	0	1,493	0	0	0	0	0	0	1,493	0.75	1,120
Ğ'n.	Total	15,952	31,325	18,581	19,001	2,881	2,035	3,932	1,210	0	94,916		77,218

ANALYSIS DESIGN

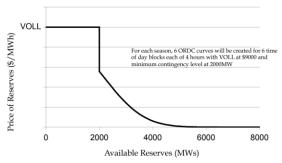
Investment Options

Туре	Size (MW)	Overnight cost (\$/kW)	Life Cycle	Fixed O&M Cost (\$/kW/Year)	Variable O&M Cost (\$/MWh)	Fuel Cost (\$/MMBTU)	Weighted Average Cost of Capital (%)
NGCC	400	1,026	30	10.25	3.08	4.64	5.3
NGCT	200	873	30	12.30	7.18	4.64	5.3

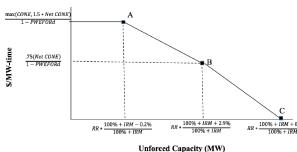
VRE Penetration Levels

Scenario	Wind Capacity (MW)	Penetration Level (%)
Base	21,516	18.4
Modest	30,070	25.7
High	38,625	33.1

- Cost of New Entry (CONE)
 - \$177.6 /MW-day
 - Capital cost, fixed O&M cost, and life cycle of NGCT unit
 - Net CONE = CONE revenue offset from energy/reserves (30%)
- Target installed reserve margin (IRM):
 - 13.75%



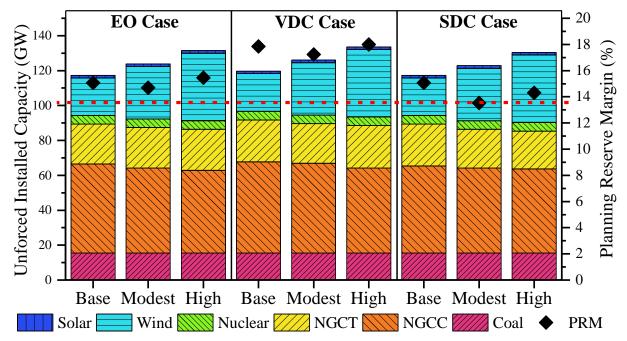
MARKET DESIGN OPTIONS


Market design parameters

Market Design	Load Shedding Penalty	Reserve Shortage Penalty	Capacity Market Demand Curve
Energy-only (EO)	\$9,001	ORDC (\$9,000 Max)	N/A
Vertical Capacity Demand Curve (VDC)	\$3,500	\$3,500 (~4%); \$2,250 (4~96%); \$200 (96~100%)	Vertical (Fixed)
Sloped Capacity Demand Curve (SDC)	\$2,100	\$850(~96%); \$300(96~100%)	Sloped

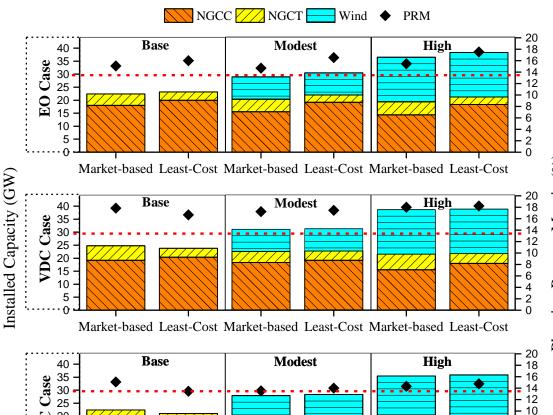
<ERCOT Operating Reserve Demand Curve(ORDC)*>

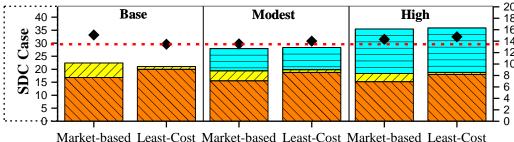
<MISO Capacity Market Demand Curve>


<PJM Capacity Market Demand Curve>

RESULTS

 Comparison of the generation portfolio in terms of ICAP and PRM from the market-based model





RESULTS

Comparison of the additional investment capacity (ICAP) from the least-cost and the market-based model

CONCLUSIONS

- VRE influence electricity markets
 - Incentive schemes may have substantial impacts on prices
- Open questions around resource adequacy with VRE
 - Capacity markets are complex and not well understood
 - Solutions need to enable economic entry and exit
- A multi-agent model for capacity expansion
 - Considers market interactions between competing GenCos
 - Models revenues from energy, reserves, and capacity markets
- Case study results
 - Energy only design may work well
 - Capacity markets benefit from using a sloped capacity demand curve
 - Proper market signals can guide the market outcome towards a least-cost optimum, also with high VRE levels

FUTURE WORK AND EXTENSIONS

- Incorporate transmission expansion planning
- Investigate other capacity remuneration policies
- Further enhance the computational performance
- Heuristics to find an equilibrium solution

REFERENCES AND ACKNOWLEDGEMENTS

- Sponsor: U.S. DOE Wind Energy Technologies Office
- The views expressed in this presentation are the authors own and do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Kwon J., Zhou Z., Levin T., Botterud A., "<u>A Stochastic Multi-Agent Resource Planning Model: The Impact of Capacity Remuneration Mechanisms</u>," 2018 Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise ID, Jun. 2018.

Byers C., Levin T., Botterud A., "Capacity market design and renewable energy: Performance incentives, qualifying capacity, and demand curves," *Electricity Journal*, Vol. 31, No. 1, pp. 65-74, 2018.


Levin T., Kwon J., Botterud A., "The Impacts of Renewables Support Schemes and Carbon Policies on Electricity Markets," Working Paper, Oct. 2018.

Wiser R., Mills A.D., Seel J., Levin T., Botterud A., "Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs," Technical Report LBNL-2001082," Nov. 2017.

Kwon J., Zhou Z., Levin T., Botterud A., "Market-based Resource Adequacy Assessment Framework under High Wind Penetrations," IEEE *Transactions on Power Systems*, Under Review

